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Abstract. Deductive synthesis aims to synthesize a program from a for-
mal specification, without requiring the programmer to write the imple-
mentation or any additional annotations. Polikarpova and Sergey devel-
oped SuSLik, a deductive synthesizer for programs with pointers, using
Synthetic Separation Logic. In this replication study we construct a sim-
ilar deductive synthesizer, DeSyL, based on the methodology from the
SuSLik paper while making some minor changes and resolving some ir-
regularities. We compare the results of our implementation to the results
of the SuSLik paper, and discuss the implications of our findings.
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1 Introduction

Deductive synthesis is an approach inspired by Automated Theorem Proving to
address the issue of the additional work for deductive verification of programs.
Instead of requiring the programmer to write the implementation, the formal
specification, and the annotations to guide the verification process, deductive
synthesis only requires the specification and then synthesizes the implementa-
tion autonomously, requiring no further annotations. Deductive synthesis does
increase the computational complexity of the proof steps, since the synthesis al-
gorithm is required to perform all proof steps autonomously. However, a strate-
gically designed logic system can significantly reduce this complexity by guiding
the synthesis algorithm.

Seperation Logic (SL) is a formal logic for verifying programs with point-
ers and dynamic memory allocation that is designed to be amenable to auto-
mated reasoning [7]. Polikarpova and Sergey [6] combine these developments in
a theoretical approach for deductive synthesis with Separation Logic and their
implementation SuSLik. Using a synthesis-focused form of SL called Synthetic
Separation Logic (SSL), SuSLik is capable of efficiently synthesizing programs
with pointers, pointer arithmetic, and dynamic memory allocation from a for-
mal specification, without requiring any additional annotations. Furthermore,
SuSLik is capable of generating cyclic proofs, permitting the synthesis of struc-
turally recursive programs. In order to better understand SuSLik, we replicated
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it in DeSyL1. In this paper we will first outline SuSLik’s methodology itself,
then outline our implementation DeSyL and how it compares to SuSLik, dis-
cuss the results of our implementation on benchmark problems and discuss how
they compare to SuSLik’s results, and finally discuss areas for future work.

2 SuSLik methodology

At the core of SuSLik’s methodology is the Synthetic Separation Logic (SSL), an
extended ruleset based on Separation Logic [6]. We discuss some relevant rules in
detail in Section 3, but the fundamental concept is that SSL rules transform the
pre- and/or postcondition of a specification and possibly add a program state-
ment that achieves this transformation. The rules are designed to be amenable
to automated reasoning, and use the structure of the specification to guide the
synthesis algorithm towards a correct implementation. The synthesis algorithm
itself uses a simple depth-first search through the proof space, applying the SSL
rules to the specification, backtracking when the rules cannot transform the spec-
ification further, and terminating when the specification is transformed into one
that is trivially satisfied by the empty program. The program statements that
were synthesized by the SSL rules to achieve the trivially satisfied specification
must then form a correct implementation of the original specification.

Of the SSL rules used in SuSLik, some rely on a pure reasoning system
to reason about the specification’s pure constraints, which are constraints that
do not involve the heap memory. In the original publication, this pure reasoning
system is enabled by an external SMT solver, which is used to determine whether
a pure constraint is implied by/compatible with another pure constraint.

Finally, SuSLik is capable of synthesizing programs with recursive procedure
calls by generating cyclic proofs. This is achieved by using a rule that unifies a
reduced version of the precondition after some rule applications with the pre-
condition of the original function specification, and then inserts a function call
to satisfy the postcondition of the original function, which can hopefully be used
to complete the synthesis of the transformed specification.

3 Replication

This section discusses our replication, DeSyL, and how it compares to the origi-
nal SuSLik implementation. We discuss the various aspects of the DeSyL imple-
mentation, emphasizing differences with SuSLik and ambiguities in the original
paper, as well as the functionality that was not replicated in DeSyL.

3.1 Technology choice

The SuSLik paper itself only provides a theoretical framework for deductive
synthesis, and so it is agnostic towards implementation choices such as the im-
plementation language. The original SuSLik implementation is written in Scala.
1 Pronounced “diesel”.
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Variable x, y ::= Alpha-numeric ident.
Value d ::= Theory-specific atoms
Offset ι ::= Non-negative integer
Expression e ::= d | x | e “ e | e^ e |

␣e | . . .
Command c ::= let x “ ˚px` ιq |

˚px` ιq “ e |
skip | error | fpeiq |
if peq tcu else tcu |
c; c

Fun. dict. ∆ ::= ϵ | ∆, f pxiq tcu

Pure term ϕ, ψ, χ ::= e | . . .
Symb. heap P,Q,R ::= emp | xe, ιy ÞÑ e |

rx, ns | p pxiq | P ˚Q
Assertion P,Q ::= tϕ, P u

Heap predicate D ::= p pxiq xej , tχj , Rjuy

Function spec F ::= f pxiq : tPutQu
Environment Γ ::= ϵ | Γ, x
Context Σ ::= ϵ | Σ,D | Σ,F

Fig. 1. Grammar of program language (left) and SSL specifications (right) as per [6].

Our implementation DeSyL is written in C++, a language that is known for
its strong support for systems programming and performance, a choice that is a
matter of personal preference. Although the synthesis algorithm in the SuSLik
paper is described in a functional style, it is easily translated to an imperative
style since it describes a simple depth-first search. Furthermore, SuSLik uses Z3
as an external SMT solver to enable the pure reasoning system, and ScalaSMT
to interface with Z3. DeSyL does not use an external SMT solver, as it is pri-
marily designed to be a replication of the SuSLik methodology and integration
with an external SMT solver was not a priority. Because of the lack of an explicit
SMT solver, DeSyL uses modified versions of many of the SSL rules to enable
the pure reasoning system, and emulates a simpler pure reasoning system with
dedicated rules to rewrite and simplify the pure specification. Note that these
rules are chosen specifically to include the capabilities needed to synthesize our
benchmark examples, so the successful synthesis of the benchmarks in question
does not imply that this system approximates the capabilities of an SMT solver.

3.2 Syntax

The most basic aspect of the implementation is the syntax definition for the
program language and the goal specification language. The SuSLik paper gives
formal definitions of the syntax of the program language and the goal specifica-
tion language, shown in Figure 1. These grammars are relatively representative,
but not entirely complete or congruent with the actual SuSLik implementation.
The main ambiguities arise from symbolic parts of the syntax, such as the use
of f indicating a function name and the separating comma between ∆ and f
not being a literal element of the syntax, but merely indicating a concatena-
tion of functions. However, there are also cases where the implementation differs
from the grammar, and we have to choose an approach for DeSyL. For the
most part, these are minor and essentially arbitrary syntactic differences, such
as the use of ** for the separating conjunction ˚ since * is the multiplication
operator, or adding the predicate keyword before predicate definitions and the
void keyword before function names in the specification. The most remarkable
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incongruity is that the specification grammar states that the arguments to a
predicate invocation in a heap specification only take identifiers x as parameters,
and not general expressions. This is a strange limitation, as it would not change
the semantics of the specifications significantly if general expressions could be
used. It would simply require substituting those expressions when unfolding the
predicate definition. Furthermore, although there is no example for the SuSLik
implementation that violates this limitation, there is actually an example in the
SuSLik paper that does, using the predicate invocation lseg0px, 0, Sq in Sec-
tion 2.5.2.2 DeSyL resolves this ambiguity by following the grammar and only
allowing identifiers as parameters, but this is an arbitrary choice.

3.3 Synthesis algorithm

As mentioned in Section 2, the synthesis algorithm is a simple depth-first search
through the proof space, applying the SSL rules to the specification, backtrack-
ing when the rules cannot transform the specification further, and terminating
when the specification is transformed into one that is trivially satisfied by the
empty program. The SuSLik paper also outlines three major optimizations:
phase distinction, rule invertibility, and commutativity optimization. Of these
only rule invertibility is implemented in DeSyL. In both implementations some
rules are known to be “invertible”, meaning their application does not affect the
solvability of the synthesis goal, so if one of these rules is applied and synthe-
sis backtracks, other rules do not have to be attempted since the goal is not
solvable by the synthesis algorithm. The SuSLik paper specifically indicates
four invertible rules, Read, StarPartial, NullNotLVal, and SubsLeft. Of
these, DeSyL does not include the StarPartial rule due to the different way it
handles pure reasoning, and for this pure reasoning includes some other invert-
ible rules, but the other three are implemented and invertible in DeSyL. The
other two optimizations are completely absent in DeSyL. The first, phase dis-
tinction, involves dividing of the rule applications into “phases” where the rules
are grouped. The synthesis algorithm is always in some phase corresponding to
a specific group. The other optimization is commutativity optimization, which
ensures that commutative rules are only applied in a canonical order to avoid
redundant rule applications. One ambiguous aspect of the synthesis algorithm
is that while the depth-first search attempts the different rules in order at ev-
ery step (barring optimizations), the paper does not specify the order in which
the rules are attempted in SuSLik. In DeSyL’s development the order changed
several times to optimize the synthesis process, with one notable concern being
that the Read rule, which generates code and is often applicable without being
necessary, is at the bottom of the priority list.

2 Here the superscript 0 is a label used to indicate nesting for the recursion mechanism,
and is not literally part of the syntax.
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EVpΓ,P,Qq “ ∅ $ ϕñ ψ
EmpS

Γ ; tϕ; empu; tψ; empu | skip

ψ ‰ K $ ϕ^ ψ ñ K

Γ ; tempu; tK; empu | c
PostInconsistentS

Γ ; tϕ;P u; tψ;Qu | c

EVpΓ,P,Qq “ ∅
EmpD

Γ ; tϕ; empu; ttrue; empu | skip

Dϕ1
P ϕY ψ : ␣ϕ1

P ϕY ψ

Γ ; tempu; tK; empu | c
PostInconsistentD

Γ ; tϕ;P u; tψ;Qu | c

Fig. 2. Comparison of the Emp and PostInconsistent rules in SuSLik (left) and
DeSyL (right).

3.4 Synthesis rules

The specific SSL rules are the most important part of the SuSLik methodology,
and the bulk of the implementation work in DeSyL is in the implementation of
these rules. Although most of these rules remain the same in DeSyL, there are
some notable differences. Figure 2 shows a comparison of the implementations of
the Emp and PostInconsistent rules, where Emp is used to complete synthesis
once the specification is trivially satisfied by the empty program, and PostIn-
consistent is used to terminate early from a synthesis where the postcondition
is inconsistent with the precondition. Both of these rules rely on SuSLik’s
pure reasoning system through an external SMT solver to determine implica-
tion and inconsistency respectively. Since DeSyL does not use an external SMT
solver, it relies on simpler pure reasoning rules to simplify the postcondition
and strengthen the precondition. Then the Emp rule can be applied once the
postcondition is simply true, and the PostInconsistent rule can be applied
when there is a pure clause that is present in the specification while its literal
negation is also present in the specification. DeSyL also adds a completely new
early termination rule, the SetSize rule shown in Figure 3, which is used to
terminate early from a synthesis where the postcondition and precondition spec-
ify inconsistent constraints on the size of a set variable. This is achieved by the
PostInconsistent rule in SuSLik, but has to be handled separately in DeSyL
due to the simpler pure reasoning system.

Figure 4 shows a comparison of the Call rule in SuSLik and DeSyL. The
Call rule is used to synthesize a recursive function call, and is the only rule that

s is a set variable
minsizeps, ϕq ą maxsizeps, ψq

_ maxsizeps, ϕq ă minsizeps, ψq

Γ ; tempu; tK; empu | c
SetSizeD

Γ ; tϕ;P u; tψ;Qu | c

Fig. 3. The SetSize rule in DeSyL.
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F fi fpxiq : tϕf ;Pf u tψf : Qf u P Σ

R “
l

rσsPf $ ϕ ñ rσsϕf

ϕ1
fi rσsψf R1

fi rσsQf ei “ rσsxi

Varspteiuq Ď Γ Σ; tϕ ^ ϕ1;P ˚ R1
u ; tQu | c

Σ; tϕ;P ˚ Ru ; tQu | fpeiq; c

F fi fpxiq : tϕf ;Pf u tψf : Qf u P Σ

R ą
l

rσsPf

ϕ1
fi rσsψf R1

fi rσsQf ei “ rσsxi

Varspteiuq Ď Γ Σ; tϕ1;P ˚ R1
u ; tQu | c

Σ; ttrue;P ˚ Ru ; tQu | fpeiq; c

Fig. 4. Comparison of the Call rule in SuSLik (left) and DeSyL (right).

is used to generate cyclic proofs in SuSLik. In order to be able to synthesize
recursive function calls, SuSLik checks that the current precondition can imply
a unified version of the precondition of the function specification, but DeSyL
uses a weaker Call rule that can only call functions with a trivially true pure
precondition. SuSLik also uses an additional rule, the AbduceCall rule, to
determine what parts of the precondition are still required to prepare for a
recursive call and derive this preparation. This rule is not present in DeSyL at
all, meaning there are some cases where DeSyL cannot synthesize a recursive
call that SuSLik can because it cannot prepare for the call.

3.5 Pure reasoning system

DeSyL’s pure reasoning system consists of a set of rules that are used to rewrite
and simplify the pure specification, shown in Figure 5. The PureFrame rule is
used to eliminate pure constraints from the postcondition when they are implied
by the precondition, the Reflexivity rule is used to eliminate a pure constraint
from the postcondition when it is trivially true because it is a reflexive binary
boolean operator applied to the same expression, the TrueElision rule simply
eliminates any pure constraint that consists of the boolean literal true from the
postcondition, and the ExpandImplied rule is used to strengthen the precon-
dition by adding every constraint that is in the closure C of some constraint in
the precondition. These rules are used to simplify the pure specification as much
as possible, after which rules like Emp and PostInconsistent can be applied.

Γ ; tϕ ^ ϕ1;P u ; tψ;Qu | c
PureFrameD

Γ ; tϕ ^ ϕ1;P u ; tψ ^ ϕ1;Qu | c

˛ is a reflexive binary operator

Γ ; tP u ; tψ;Qu | c
ReflexivityD

Γ ; tP u ; tψ ^ e ˛ e Qu | c

Γ ; tP u ; tψ;Qu | c
TrueElisionD

Γ ; tP u ; tψ ^ true;Qu | c

C1 :“ tϕ˚
P Cpϕ1

q | ϕ˚
R ϕu C1

‰ ∅

Γ ; tϕ ^ ϕ1
^

Ź

ϕ˚PC1

ϕ˚;P u ; tQu | c

ExpandImpliedD
Γ ; tϕ ^ ϕ1;P u ; tQu | c

Fig. 5. The pure reasoning rules in DeSyL.
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Fig. 6. DeSyL synthesis times.

4 Results

Next we compare the outputs of DeSyL and SuSLik, both in terms of efficiency
and in terms of utility and versatility. We can see that many of the features of
the initial SuSLik implementation are also included in DeSyL, although some
are implemented in a more simplistic way. Furthermore, the lack of the Abduce-
Call rule and the less powerful pure reasoning mechanism impact the ability to
synthesize more complex programs, limiting the synthesis of arbitrary recursive
programs. However, in general terms the two implementations are comparable,
and the simpler examples are easily synthesized in both tools.

Unfortunately, due to the limitations of DeSyL and the SuSLik paper’s em-
phasis on more complex synthesis examples many of the benchmarks reported
in the SuSLik paper are not feasible in DeSyL at all. Of the 20 benchmarks
presented in Section 6.1 of the SuSLik paper, only 4 have been achieved in
DeSyL at all, namely swap, min, listfree, and treefree. Additionally, three
more examples given in the body of the SuSLik paper to clarify the methodol-
ogy; elem, max, and notsure; have been achieved in DeSyL as well but are not
used as performance benchmarks in the SuSLik paper, so we cannot compare
performance. The remaining 14 benchmarks are not feasible in DeSyL at all,
and so we cannot compare performance on these benchmarks either.

4.1 Performance

Figure 6 shows the time required for synthesis for each example. Similarly to the
SuSLik paper, we report the time as obtained on a commodity laptop (2.1 GHz
AMD Ryzen Acer Aspire 5 with 16 GB of RAM, as opposed to SuSLik’s 2.7
GHz Intel Core i7 Lenovo Thinkpad with 16GB RAM), and we compare to the
SuSLik time with all optimizations enabled since this time is equivalent to the
times without the optimizations that are absent in DeSyL for all examples.
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Fig. 7. DeSyL specification and synthesized program sizes.

Unfortunately, we cannot meaningfully graph the SuSLik times since they
are all either 0.1 seconds or “ă 0.1 seconds” which is not granular enough to
plot, so we consider these separately. Of the four examples that can be syn-
thesized by both implementations and are used as benchmarks in the SuSLik
paper, which are listed on the left, three have a listed time with optimizations
of ă 0.1 seconds, which is the lowest possible value in the SuSLik table and
gives us little information about the actual time. However, the listed time for
min is 0.1 seconds. It is not clear from the paper whether this is rounded up or
down, but it at least indicates that the time is roughly in the order of magnitude
of 100 milliseconds. In contrast, DeSyL synthesizes the same example in only
approximately 12 milliseconds. It is not exactly clear why DeSyL synthesizes
this example faster, but one possible explanation is the branch abduction mech-
anism. SuSLik has to enumerate all atomic boolean expressions over program
variables, and then defer to its external SMT solver to determine whether this
expression is sufficient to make the implication valid, while DeSyL simply checks
whether the pure postcondition consists of only one clause and then uses this
clause. This means that DeSyL may be able to establish the candidate branch
guard much faster than SuSLik, but at the cost of having a less powerful branch
abduction mechanism.

4.2 Program size

Next we show a comparison between the amount of code in the specification
and the amount of code in the synthesized program in Figure 7, omitting empty
programs. Again the first four examples are the ones that are feasible in both
SuSLik and DeSyL. We see that DeSyL is able to synthesize most examples
from a specification with a size comparable to that of the program, ranging from
2 to less than 0.25 times the size of the program. Especially longer programs seem
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to consistently be longer than the specification. These results are not compared
to those of SuSLik because SuSLik uses a different metric for size, namely the
number of AST nodes, but manual inspection did not reveal any difference.

5 Conclusion

In summary, we have seen that the SuSLik methodology is a viable approach
to efficient deductive program synthesis, and that our implementation DeSyL
successfully incorporates much of the outlined functionality. Furthermore, we
have seen that DeSyL is able to synthesize many of the examples presented in
the paper, although fewer of the 20 actual benchmarks, and at least one even
faster than SuSLik. However, there are still some key features missing from
DeSyL, which impact the synthesis of more complex recursive programs. Thus,
while our implementation is a modestly successful replication, there are still
aspects that we were not able to reproduce within the scope of the project.

The most obvious directions for future work are the integration of an external
SMT solver, allowing for a more powerful pure reasoning system as in the paper,
and the AbduceCall rule to enhance recursive synthesis. However, there are
also some other interesting directions, especially those outlined in a later review
paper on the status of SuSLik [4]. One interesting example is supporting the
synthesis of concurrent programs. To address the complexity of shared memory
in concurrent programs O’Hearn, an expert on Separation Logic [3,2,5], proposed
Concurrent Separation Logic [1]. Combining the SuSLik methodology with CSL
could allow for efficient synthesis of concurrent programs with shared memory.
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