
Deterministic State Space Exploration

Martin Nowack1[0000−0002−1177−0233]

Imperial College London, United Kingdom
m.nowack@imperial.ac.uk

Abstract. Symbolic execution is a very active research area due to its
ability of automatic test-case generation, bug finding, and many more
applications. Despite the many recent proposals for improvements, we
find it hard to quantify how state of the art progresses. Even if we only
compare a single symbolic execution engine (A) and the same engine with
some modifications (A*), running both implementations with the same
benchmarks, concluding on the true cause of differences in behaviour is
hard.
While artifacts (here benchmarks, measurements, data, and implemen-
tation) provide an invaluable base for reproducable research, the imple-
mentation itself is often treated as a blackbox. Changes in behaviour
between two implementations are quantified based on coarse-grain dif-
ference in benchmark behaviour, i.e., changed code coverage or changed
execution time. We propose a complementing fine-grain approach that
helps to understand implementations better — not only supporting re-
producable research but also the development of the implementation in
the first place.
In this paper, we analyse KLEE, a well established dynamic symbolic
execution engine for C and C++, and identify significant challenges that
make it hard to evaluate and compare different implementations. We
identify different reasons that are implementation-specific to KLEE but
often can be transferred to other symbolic execution engines and propose
ways to fix them. We propose Deterministic State-Space Exploration as
one technique that helps to quantify and validate incremental improve-
ments of symbolic execution engines.

Keywords: Determinisem · Symbolic Execution

1 Introduction

Scaling symbolic execution for test-case generation and bug finding got much
traction in recent years. With a lot of new symbolic engines available and exten-
sions proposed, evaluating their impact is hard. For example, KLEE [CDE08], a
popular symbolic execution engine for C and C++ code based on LLVM, is avail-
able as open-source software and actively maintained. It is used as a baseline
or extended in more than 200 publications [20]. Still, evaluating and compar-
ing the effectiveness of different approaches and presented techniques that have
been developed using KLEE is hard even if access to software and experiment
artefacts is available.

2 Nowack

In general, quantitatively measuring and comparing the efficiency of two
approaches is hard. If two implementations behave differently, the actual cause
can be either the implementations of the proposed research idea themselves, the
system and context within which they are executed, the subjects they are tested
with, or a mixture of those reasons. As a consequence, the measured effect cannot
be necessarily attributed to the correct cause, i.e., the changed implementation.

To evaluate the performance of a system in general, we measure the work,
W a system does and how much time T it took to finish it. The larger the ratio
(P = W

T) is, the more performant is a system. However, a requirement for this
is to define work that the tested system has to do. If two systems use the same
time limits, the one that finished more work is more performant. Unfortunately,
this assumes that a workload can be devided into equally-sized and equally-hard
problems.

The example throughout this paper is measuring the effectiveness of differ-
ent symbolic execution implementations, which is hard. The reason is the many
control-flow paths a tested benchmark application can have. Instead of having
a benchmark with a specific set of test input that triggers a well-defined path
(e.g., SPEC benchmarks [Hen06]), the symbolic execution engine can potentially
explore arbitrarily sized sets of paths through the application. This behaviour,
combined with the state-space explosion problem, will often not allow the anal-
ysis of the whole applications in a given timeframe. As such, this impacts the
following questions: Which of the paths are explored by symbolic execution?
Has a path been fully explored? Or, in which order are they explored? The com-
putational costs associated with a path can vastly vary for different paths. As
a result, if two implementations analyse different parts of a tested application,
the overall characteristics of the executed instructions can differ broadly. For
a symbolic execution engine, exploring different code paths of a testd software
will have an impact on the number of states being handled and the states’ path
constraints for the solver. Therefore, measuring the effectiveness of two different
approaches to compare them needs to take these properties into account.

Listing 1.1: Example code with two paths of different costs. Taking the true
branch in line 2 will generate more complex constraints utilising multiple sym-
bolic variables. While taking the false branch, just one is required.

1 int a = symbolic ;
2 i f (a > 5) {
3 int b = symbolic ;
4 a += a % b ;
5 }
6 return a ;

In the example code above (Listing 1.1), we have two variables (a and b) that
have arbitrary symbolic values as an input. Symbolic execution can exercise two
paths: one with the condition a > 5 (Line 2) true and one with false. If true, the
result of the return instruction will be more complex. And depending in which

Deterministic State Space Exploration 3

context it is used, this will have an impact on the time spent in solving or the
number of states forked.

While testing different search-space exploration strategies is important [HMZ12;
ZJX18; Xie+09], measuring their effectiveness is possible if they are handled as
randomized algorithms. Using the correct statistical tests to assess them boils
down to using high numbers of iterations with different inputs and applications.

In the following section, we give an overview of the state-of-the-art of com-
paring symbolic execution engines (section 2) and the limitations. We detail
multiple causes that make it harder to compare different implementations (sec-
tion 4). We introduce Deterministic State-Space Exploration (section 3) as a
new approach to compare different symbolic execution implementations and the
non-deterministic sources. We give an overview of requirements and changes that
have been necessary to support such a comparison strategy in KLEE.

For this paper, we explicitly do not cover non-deterministic behaviour re-
sulting from the environment (like different OS scheduling decisions, ASLR or
additional load on a testing machine) or non-deterministic behaviour inherent
to the application itself (like the test applications using a random number gen-
erator, time, free disk space,. . .). Therefore, if we have a single implementation
of a symbolic execution engine that analyses one application with only one set
of arguments, running this setup multiple times should have the same determin-
istic result. We assume that we have such a testing setup and build on top of it,
reducing the environmental impact to a minimum. Research in this area takes
care of precisely those issues[BLW19]. Most importantly, we focus on comparing
symbolic engines using a fixed, precise workload, targeting mainly incremental
changes of symbolic execution engines, i.e., one implementation of a symbolic
execution engine A is extended, resulting in a version A* and both versions are
directly compared.

2 State of the art: Comparing Improvements in Symbolic
Execution

To measure the effectiveness of different symbolic execution approaches, two
major methods of comparing them have been utilised: time-based comparisons
and coverage-based comparisons[RED16].

For the time-based comparisons, a specific workload is given (e.g., execute n
instructions, fork m times) and the time is measured how long it takes to finish
it. Still, one implementation might take an unreasonably long time to finish. To
avoid arbitrarily long experiment runs or discard those results, time-out based
measurements have been proposed (Rizzi et al.[RED16]) that set a maximum
time an experiment can take. Beyond this, the experiment is marked as timed-
out.

For the coverage-based comparison, two methods A and B are compared on
how much of the code could be covered by both approaches using the same
execution time. The higher coverage should indicate the method that is better.

4 Nowack

Unfortunately, those methods are vulnerable to multiple issues, especially
in the context of symbolic execution. We will detail the issues in the following
paragraphs.

Coverage Criterium Coverage describes what part of the code has been exer-
cised. Different metrics focus on different units for describing this property. For
example, line coverage describes how many lines of code have been executed.
Branch coverage describes how many branch targets have been taken, or MCDC
coverage which predicate combinations have been exercised for a branch condi-
tion.

Using coverage as a criterium can be insightful; still, often, coverage changes
are only compared by quantifying their changes (+/−X improvement in coverage
or if coverage is similar) but not how they differ in detail. If two implementations
are compared, how much of the covered code is common for both methods?
Where do they differ? As different code paths will vary in costs, like time spent
in solving path constraints or forking of states, comparing only the nominal
values of coverage is not a valid approach to conclude which implementation is
better.

Besides that, if we look at how coverage evolves over time, we see that often
much coverage is reached at the beginning of the symbolic execution as it is
easy for a symbolic engine to reach uncovered code paths — executing any in-
struction is essentially covering new instructions. Over time, reaching uncovered
code becomes more challenging as path constraints become more complex and
uncovered, reachable code is further away.

Another aspect is how coverage is calculated. Often, this happens in a two-
stage process. First, a symbolic execution engine uses an internal tracker to
remember which part of the code has been already covered. For example, KLEE
has an internal coverage tracker and marks execution state with covers new if
new code has been reached. A test case is generated with inputs that are able to
reach this code. In a second step, an external tool is used (i.e. gcov [FSF17]) to
use those test cases as input and execute the native version of the application to
gather coverage information. The upside of this approach is that, for example, if
the generated test case triggers a bug, its validity can be validated independently
of the symbolic execution engine. Concerning achieved coverage, the downside is
that it often claims more code to be covered, although symbolic execution was
not able to reach that code in the first place. For example, if symbolic executes
an application, stops the execution the moment the first conditional branch has
been reached and generates a single test case, executing the native application
will typically cover much more of the application than has been analysed in the
first place.

Time-based comparison For the time-based comparison, evaluating different im-
plementations is hard. They are reasonable if the tested application can be fully
explored. If not, like for many non-trivial applications, the two implementations
can take different control-flow paths in the tested applications. Therefore, the
code that is explored is different with different costs associated.

Deterministic State Space Exploration 5

To summarise, the different measurement approaches are not enough to con-
clude a new technique’s impact over a given baseline as they do not imply that
the same work has been done.

Statistical Valid Comparison Both comparisons could be improved by running
experiments on a broader range of applications or many more execution runs [AB14].
While, we clearly agree that this would be the ideal way forward, we want to
emphasise that it is often not feasible to have such a setup. With limited bud-
get, time, and computational resources — especially in the academic context —
this is often not achievable. Even if those would be available, the environmental
impact is much higher than our suggested strategy.

3 Deterministic Exploration of the State Space

To improve the validity of measurements of two or more symbolic execution
engines, we propose Deterministic Exploration of State Space that allows us to
validate different symbolic execution engines exercising the same precise work-
load.

Definition 1 (Instruction). An instruction is the smallest unit of work a sym-
bolic execution engine can execute.

For example, in the case of KLEE, instruction is an LLVM IR [LA04] in-
struction.

Definition 2 (State). A state represents the allocated memory and the col-
lected path constraints along one execution path for software under test.

Definition 3 (Deterministic Exploration of State Space). If two symbolic
executions compromise the exact same instructions by the same states in the
same order.

With these definitions in place, a workload is an ordered list of instructions
generated via the deterministic exploration of the state space. We can compare
runs of different symbolic execution engines or the same engine and quantify
them, for example, with respect to execution time or resource utilisation like
memory consumption or caching solver efficiency.

These definitions are simple, but achieving them is hard and poses several
non-trivial challenges.

3.1 Example of the application of deterministic state space
exploration

Due to space restrictions, this is a very short version of our use case.
We compared two versions of KLEE that differed only by the SMT solver used

for query solving (A: STP [GD07] vs. A*: Z3 [MB08]). We ran different Core-
Utils experiments similar to [CDE08] for 30min each application with different

6 Nowack

search strategies (Depth-First-Search (DFS), Breadth-First-Search (BFS),Ran-
dom+Coverage-guided search (Rnd+Cov)).

While we first concluded that Z3 had an edge over STP, we imposed de-
terministic state space exploration for all the experiments, i.e., for the same
application and the same search strategy, the same instructions were executed
for both implementations (A:STP, A*:Z3). We noticed that execution time of ex-
ecuting instructions differed and so did solving time. While different solving time
would be explicable and expected, different time spent in the actual instruction
execution was not due to the deterministic state space exploration.

We found that the cause of the different time spent in executing instructions,
was due to KLEE’s handling of the solver invocation of STP by forking its process
that was highly influenced by KLEE’s utilised memory slowing down the actual
instruction execution. We fixed this behaviour by mitigating the forking costs.
We re-ran all experiments, and as a result, both implementations showed the
same time in instruction execution as expected in the first place, changing the
result which solver is better in favour for STP.

We used that technique in muliple papers, e.g., [Now19; NTF15; BNC20] not
only to show valid performance improvements but also demonstrating correctness
with respect to the baseline behaviour.

4 Sources of Non-deterministic Behaviour - KLEE as an
Example

We have seen the power of deterministic state-space exploration as a methodol-
ogy. Unfortunately, applying this approach is not straightforward as one would
expect. For our use case, we used KLEE, which shows several non-deterministic
cases of behaviour even in the context of deterministic testing environments.
To support deterministic state-space exploration in KLEE, we had to extend
it in several ways. We started with adding support to track executed instruc-
tions. Based on this, we debugged differing executions and applied fixes mainly
origin in internal datastructures and behaviour that lead to to different search
beahviour even for static search strategies like DFS.

We will detail the many building blocks of this approach and the obstacles
we had to deal with in a longer version of this paper.

We are convinced that similar behaviour exists in other symbolic execution
engines as well.

5 Limitations

This approach’s major goal is to specify a workload by using a trace that de-
scribes the exact instructions and states that executed them.

While this allows comparing different aspects of a symbolic execution engine,
like state representation, solver efficiency and instruction execution efficiency, it
does not allow comparing different state-space exploration strategies.

Deterministic State Space Exploration 7

6 Conclusion

Testing symbolic execution is hard. The potentially unlimited number of paths
a program can take and the different computational expenses each path has,
make it often impossible to explore the whole program fully under a specific
time budget. As a result, comparing different implementations of a symbolic
execution engine might lead to incorrect conclusions as they execute different
workloads if different parts of the search space are explored.

We demonstrated such behaviour using a showcase and propose determin-
istic space exploration as one way to improve it. We detailed sources of non-
determinism in general and KLEE specifically that had to be addressed to
achieve deterministic exploration of states. Many of those changes have been
already made available in upstream KLEE to support the wider research com-
munity.

This approach’s applicability is only for certain incremental changes. How-
ever, for cases where it can be applied, it provides an accurate way for researchers
to explore new ideas and evaluate existing, concluding on performance and cor-
rectness. Moreover, we are convinced that the general approach can be applied
beyond symbolic execution for better research replicability.

References

[LA04] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation”. In: International
Symposium on Code Generation and Optimization, 2004. CGO 2004.
Mar. 2004, pp. 75–86. doi: 10.1109/CGO.2004.1281665.

[Hen06] John L. Henning. “SPEC CPU2006 Benchmark Descriptions”. In:
SIGARCH Comput. Archit. News 34.4 (Sept. 2006), pp. 1–17. issn:
0163-5964. doi: 10.1145/1186736.1186737. url: http://doi.acm.
org/10.1145/1186736.1186737.

[GD07] Vijay Ganesh and David L. Dill. “A Decision Procedure for Bit-
Vectors and Arrays”. In: Computer Aided Verification. Ed. by Werner
Damm and Holger Hermanns. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 519–531. isbn: 978-3-540-73368-3. doi: 10 .
1007/978-3-540-73368-3_52.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: Unas-
sisted and Automatic Generation of High-coverage Tests for Complex
Systems Programs”. In: Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation. OSDI’08. Berke-
ley, CA, USA: USENIX Association, 2008, pp. 209–224. url: http:
//dl.acm.org/citation.cfm?id=1855741.1855756.

[MB08] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT
Solver”. In: Tools and Algorithms for the Construction and Analy-
sis of Systems. Ed. by C. R. Ramakrishnan and Jakob Rehof. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 337–340. doi: 10.
1007/978-3-540-78800-3_24.

8 Nowack

[Xie+09] T. Xie et al. “Fitness-guided path exploration in dynamic symbolic
execution”. In: 2009 IEEE/IFIP International Conference on De-
pendable Systems Networks. June 2009, pp. 359–368. doi: 10.1109/
DSN.2009.5270315.

[HMZ12] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. “Search-
Based Software Engineering: Trends, Techniques and Applications”.
In: ACM Comput. Surv. 45.1 (Dec. 2012). issn: 0360-0300. doi: 10.
1145/2379776.2379787. url: https://doi.org/10.1145/2379776.
2379787.

[AB14] Andrea Arcuri and Lionel Briand. “A Hitchhiker’s guide to statistical
tests for assessing randomized algorithms in software engineering”. In:
Software Testing, Verification and Reliability 24.3 (2014), pp. 219–
250. doi: 10.1002/stvr.1486. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/stvr.1486. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/stvr.1486.

[NTF15] Martin Nowack, Katja Tietze, and Christof Fetzer. “Parallel Symbolic
Execution: Merging In-Flight Requests”. In: Hardware and Software:
Verification and Testing. Ed. by Nir Piterman. Cham: Springer In-
ternational Publishing, 2015, pp. 120–135. isbn: 978-3-319-26287-1.

[RED16] E. F. Rizzi, S. Elbaum, and M. B. Dwyer. “On the Techniques We
Create, the Tools We Build, and Their Misalignments: A Study of
KLEE”. In: 2016 IEEE/ACM 38th International Conference on Soft-
ware Engineering (ICSE). May 2016, pp. 132–143. doi: 10.1145/
2884781.2884835.

[FSF17] FSF. GCOV (GNU Compiler Collection). July 2017. url: https:
//gcc.gnu.org/ (visited on 07/21/2017).

[ZJX18] Z. Zhu, L. Jiao, and X. Xu. “Combining Search-Based Testing and
Dynamic Symbolic Execution by Evolvability Metric”. In: 2018 IEEE
International Conference on Software Maintenance and Evolution
(ICSME). Sept. 2018, pp. 59–68. doi: 10.1109/ICSME.2018.00015.

[BLW19] Dirk Beyer, Stefan Löwe, and Philipp Wendler. “Reliable benchmark-
ing: requirements and solutions”. In: International Journal on Soft-
ware Tools for Technology Transfer 21.1 (Feb. 2019), pp. 1–29. issn:
1433-2787. doi: 10.1007/s10009-017-0469-y. url: https://doi.
org/10.1007/s10009-017-0469-y.

[Now19] Martin Nowack. “Fine-Grain Memory Object Representation in Sym-
bolic Execution”. In: 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). Nov. 2019, pp. 912–923.
doi: 10.1109/ASE.2019.00089.

[BNC20] Frank Busse, Martin Nowack, and Cristian Cadar. “Running sym-
bolic execution forever”. In: Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 2020,
pp. 63–74.

[20] Publications and Systems Using KLEE. 2020. url: https://klee.
github.io/publications/ (visited on 06/22/2020).

