What is the Best Algorithm for
Probabilistic Model Checking?

Tim Quatmann

RWTH Aachen University
tim.quatmann@cs.rwth-aachen.de

Markov chains and Markov decision processes are popular formalisms for model-
ing systems with probabilistic behavior. Their analysis commonly relies on com-
puting reachability probabilities and expected accumulated rewards. Computing
such measures reliably is a core functionality of probabilistic model checkers.
Implementations usually are based on value iteration (VI). In recent years, sev-
eral variants of VI have emerged that—in contrast to the classical approach—
produce sound approximations. In terms of runtime, the two most promising
variants are sound value iteration (SVI) and optimistic value iteration (OVI).
Both approaches have been compared empirically by Hartmanns and Kaminski
(2020), where an implementation in the model checker MCSTA was exercised on a
broad selection of benchmarks. The digest of the evaluation is that OVT is faster
than SVI for the majority of instances. We replicate these research results using
an implementation of both SVI and OVTI in the model checker STORM.

Value Iteration The original VI algorithm dates back to the 1950s [1] and—
besides probabilistic model checking—also finds applications in artificial intelli-
gence and operations research. Roughly, VI approaches a fixpoint of the so-called
Bellman operator ¢: R™ — R™ by computing x; := ®(x;_1) for increasing i > 0
and starting values x,. The algorithm terminates, when ||&; — ;|| falls be-
low a certain threshold. As argued in [2], this termination criterion, however,
does not provide guarantees on the accuracy of the obtained solution. In fact,
there exists adversarial models where VI—as implemented in model checkers
such as MCSTA, PRISM, and STORM—yields vastly incorrect results.

As a remedy, [2| proposes interval iteration (II) that synchronously runs
two instances of VI with different starting values to approach the fixpoint of
the Bellman operator from below and from above. SVI [4] also runs two VI
instances synchronously: one instance computes x; = &(x;_;) for increasing
i > 0 (as in VI) whereas the other instance provides bounds on the difference
between x; and the desired fixpoint. In contrast, OVI [3] uses classical VI to
approach the fixpoint from below and a heuristic to “guess” candidates for upper
bounds based on the current lower bound. Those candidates are verified using a
separate instance of VI and a principle called Park induction.

Comparing SVI and OVI Empirical evaluations in [4,3] indicate that SVI and
OVI outperform II in terms of runtime. Furthermore, [3] shows that—using their
implementations in MCSTA—OVI is faster than SVI on the majority of bench-
marks from the Quantitative Verification Benchmark Set (QVBS). We replicate

http://orcid.org/0000-0002-2843-551
https://www.modestchecker.net
https://www.stormchecker.org
https://www.qcomp.org/benchmarks

the experiments of [3] using implementations of OVI and SVI in the model
checker STORM. There are a few differences compared to the implementations

from [3]:

— STORM aggressively preprocesses the model using graph algorithms to , e.g.,
filter out states with reachability probability 1 or to collapse so-called end
components. MCSTA only performs these steps when required for correctness.

— STORM analyses the strongly connected components (SCC) of the model
sequentially—thus invoking VI, OVI, or SVI multiple times—once per SCC.
MCSTA applies these algorithms directly for the entire model.

— STORM is written in C++ whereas MCSTA is written in C#.

Replication Study We evaluated the
STORM implementations on an In-
tel Xeon Platinum 8160 CPU us-
ing 32GB RAM. We considered all
benchmark instances from the QVBS
on which STORM invokes SVI resp.
OVLI. This yields a total of 374 model
checking queries—including the 79 in-
stances from [3|. For 285 instances,
both OVI and SVI terminate within
2 seconds. 18 instances could not
be solved within 1800 seconds. Fig.
1 summarises the remaining results.
Each point (x,y) in the plot refers
to one benchmark instances and in-
dicates that the OVI-based computa-

> 512
256

128

SVI

= DTMC ¢ CTMC

8
Pt 4 MDP « MA
o PTA
<2 & — - - - - : : -
W » 2 @ e w2 N
> CERCEE >
OVI w

Fig. 1. Comparison of SVI and OVI

tions took x seconds whereas the SVI-based computations took y seconds. Those
runtimes do not include model state space construction—which is independent

of either SVI or OVI.

We observe that OVI clearly takes the lead over SVI for the vast majority
of benchmark instances—confirming observations of [3]. Thus, OVI can be con-
sidered the preferred solution method when computing reachability probabilities
and expected accumulated rewards with either MCSTA or STORM.

References

1. Bellman, R.: A Markovian decision process. J. Math. and Mech. 6, 679-684 (1957)

2. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs. Theor.
Comput. Sci. 735, 111-131 (2018). https://doi.org/10.1016/j.tcs.2016.12.003

3. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: CAV (2). LNCS, vol.
12225, pp. 488-511. Springer (2020). https://doi.org/10.1007/978-3-030-53291-8

26

4. Quatmann, T., Katoen, J.: Sound value iteration. In: CAV (1). LNCS, vol. 10981,
pp. 643-661. Springer (2018). https://doi.org/10.1007/978-3-319-96145-3 37

https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-319-96145-3_37

