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Abstract. Automated sports timetabling and scheduling is an estab-
lished field within operations research. The dominant technologies are
local search and commercial Mixed Integer Programming (MIP) solvers,
but Boolean Satisfiability (SAT) solvers are also viable.
In 2004, Zhang and others developed a SAT-based tool for generating
single, double and partial double round robin tournament timetables
satisfying a range of common constraints. The tool was available through
a Web interface that ran the solver on a Web server, but this is currently
offline. The original paper only gave an overview of the problem encoding.
In this replication study, we construct a similar system, mostly following
the original encoding, while filling in details as necessary.
The original system used the Sato SAT solver, which implemented an
extension to the DIMACS CNF format for true-literal clauses. These
have now been largely superseded by more general psuedo-Boolean (PB)
clauses; our system encodes the problem using the standardised PB for-
mat and solves it with the PB solver RoundingSat.

Keywords: SAT solvers · pseudo-Boolean solvers · sports timetabling ·
replication.

1 Introduction

This replication study focuses on a sports timetabling tool described in the
paper A SAT Based Scheduler for Tournament Schedules by Zhang and others
from 2004 [13]. The tool generated single, double and partial double round robin
tournaments timetables satisfying a range of common constraints. It used an
encoding of the timetabling problem as a SAT instance, extended with true-
literal clauses, which could be solved with Zhang’s own SAT solver, Sato [12].
The tool was available for public use through a Web interface, but the website
is no longer accessible.

Our reimplementation of the problem encoding is written in JavaScript1. We
use the pseudo-Boolean solver RoundingSat to solve problem instances.

We give some background on sports timetabling in Section 2, then give full
details of the constraints in our replication of the tool in Section 3. Section 4
presents some simple empirical results, which demonstrate that the encoding
1 To appear here: https://doi.org/10.5281/zenodo.7790943
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does indeed work; we also discuss some claims made in the original paper about
the necessity of true-literal clauses. Finally, we reflect on how to make our im-
plementation available for long-term public use in Section 5.

We attempt to verify and replicate the following claims in the original paper:

– The encoding describes tournament timetables satisfying a range of con-
straints. Replicated. We were able to generate timetables using the same
encoding, once we had completed some omitted details.

– Problem instances using the encoding can be solved quickly with a solver
that supports true-literal clauses. Replicated. The paper only gives rough
timings for one instance; we solve it in less than a second with the PB solver
RoundingSat.

– Dedicated support for true-literal clauses is necessary for the encoding to be
effective. Partially disputed. With a good choice of encoding, the clauses can
be translated into pure SAT and solved without dedicated support. We show
this using MiniSat+.

2 Background

Sports timetabling is an area within automated timetabling and scheduling that
considers how best to generate timetables for sports tournaments. Most research
considers sports or games for two teams or players. One of the most common
kinds of timetable considered is the round robin. In a single round robin, every
team must play against every other team exactly once, while in a double round
robin, every pair of teams must play twice, once at the first team’s “home”
stadium or venue and once at the second team’s. Often, the timetable is time-
constrained, meaning that it is arranged as a sequence of days, rounds or slots,
with each team playing one game in each day.

While early research on sports timetabling focused mainly on mathematical
design theory, automated timetabling currently uses two main techniques: Mixed
Integer Programming (MIP) and local search with domain-specific heuristics. See
Rasmussen and Trick [10] for a survey of the area.

In practice, timetables often have to satisfy a range of other constraints.
Teams often perform worse if they playing many consecutive away games (an
away break). Many other practical, economic and social issues, such as availabil-
ity of stadiums, policing of fans and television schedules, may introduce further
constraints. Recently, Van Bulck and others [1] observed that most research fo-
cuses on either abstract mathematical problems or a single real-world problem
and introduced a standardised format called RobinX for specifying real-world
problems and encouraging the development of general-purpose solvers [11].

Compared with MIP and local search, SAT has received little attention in
sports timetabling, with the work of Zhang and others [13] being a notable
exception. Other work on SAT and timetabling includes that of Horbach and
others [4] and our own [6, 7].

In this context, the paper we seek to replicate is interesting for two main
reasons. Firstly, it was accompanied by an implementation of a general-purpose
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solver available through a Web interface, which allowed a user to choose from a
small range of practically-motivated constraints. Secondly, it considers the use
of a SAT-based solver that supports an extended input format, which allows for
true-literal clauses, which allow one to specify that a certain number of literals
in a clause must be true. At the time, several researchers were investigating
this, which led to the standardisation of the pseudo-Boolean input format (with
pseudo-Boolean clauses generalising true-literal clauses) and the first pseudo-
Boolean solver competition in 2005 [8].

3 Problem Encoding

We now present our replication of the problem encoding used by Zhang and
others [13]. For a tournament involving n teams with games played over m days,
the encoding uses Boolean decision variables pt1,t2,d, where t1, t2 ∈ [1, n] are
teams and d ∈ [1,m] is a day. (All quantification of t1, t2 and d is implicitly over
these ranges, unless otherwise specified.) pt1,t2,d is true exactly when team t1
plays against team t2 on day d of the schedule. There are no auxiliary variables.
The constraints we implement are as follows.

3.1 Round Robin Constraints

Each team plays exactly once per day:

∀d, t1.
∑

t2
(pt1,t2,d + pt2,t1,d) = 1

Note that the original paper makes the constraint at most once per day, which
would suggest a time-relaxed timetable. We have changed this to exactly once
per day, which seems more consistent with other parts of the paper, as discussed
below.

Teams cannot play against themselves:

∀d, t.pt,t,d = 0

Each team can play each other team at most once at home and at most once
away:

∀t1, t2 6= t1.
∑

d pt1,t2,d ≤ 1

Each team must play each other team at least once and no more than twice:

∀t1, t2 6= t1.
∑

d(pt1,t2,d + pt2,t1,d) ≥ 1
∀t1, t2 6= t1.

∑
d(pt1,t2,d + pt2,t1,d) ≤ 2

There is some redundancy here, as we have not specified t1 < t2, so each fixture
occurs in two constraints, but it does not seem to present a problem for the
solvers we tried. Note that these constraints allow for either a single, double or
partial double round robin, depending on the number of days in the timetable.
m = n−1 gives a single round robin (with the ≤ 2 constraints being redundant),
m = 2(n−1) gives a double round robin and anything in between gives a partial
double round robin.
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3.2 Optional Constraints

The original tool offered a choice of optional constraints, but only give encodings
for some of them, so we had to interpret them ourselves, as follows.

No three consecutive home games (encoding in original paper):

∀t1, d0 ∈ [1,m− 2].
∑

d∈[d0,d0+2]

∑
t2
pt1,t2,d ≤ 2

No three consecutive away games (encoding in original paper):

∀t1, d0 ∈ [1,m− 2].
∑

d∈[d0,d0+2]

∑
t2
pt2,t1,d ≤ 2

At least one home game in the first three game days:

∀t1.
∑

d∈[1,3]
∑

t2
pt1,t2,d ≥ 1

At least one home game in the last three game days:

∀t1.
∑

d∈[m−2,m]

∑
t2
pt1,t2,d ≥ 1

Home and away games are as balanced as possible for each team:

∀t1.
∑

d

∑
t2
pt1,t2,d ≥ bm2 c

∀t1.
∑

d

∑
t2
pt2,t1,d ≥ bm2 c

Home weekday games, home weekend games, away weekday games and away
weekend games are as balanced as possible for each team:

∀t1.
∑

d∈M
∑

t2
pt1,t2,d ≥ b

|M |
2 c

∀t1.
∑

d∈M
∑

t2
pt2,t1,d ≥ b

|M |
2 c

∀t1.
∑

d∈E
∑

t2
pt1,t2,d ≥ b

|E|
2 c

∀t1.
∑

d∈E
∑

t2
pt2,t1,d ≥ b

|E|
2 c

where M is the set of weekdays and E = {e1, e2, . . .} is the set of weekend days.
This encoding was given in the original paper, but all constraints were of the
form . . . = k, without specifying how to calculate k, which seems incorrect if
|M | 6= |E| or either |M | or |E| is odd.

No more than three away games in the first five weekends:

∀t1.
∑

d∈{e1,...,e5}
∑

t2
pt2,t1,gw ≤ 3

No two final away games:

∀t1.
∑

d∈[m−1,m]

∑
t2
pt2,t1,d ≤ 1
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3.3 Discussion of Constraints

Time-constrained timetables. The original paper does not explicitly state whether
the implementation is for time-constrained or time-relaxed timetables. In a time-
constrained timetable, every team must play in every game day, and there are
only as many game days as necessary. A time-relaxed timetable has more game
days, but not every team plays in every day. The interface to the original imple-
mentation has no way of specifying how many game days there are. It does allow
format to be specified (single, double or partial double round robin), as well as
number of games for a partial double round robin. This is sufficient to determine
the number of game days for a time-constrained timetable only, so we conclude
that that the implementation only handles time-constrained timetables.

Redundant variables. The original formulation includes variables for a team
playing against itself, with constraints to force these always to be false. This
is clearly redundant, but we replicate it in our implementation. In practice, a
solver may be able to eliminate it immediately.

Terminology of home and away games. The original paper refers to a games
played at the opponent’s stadium as road games. We refer to these as away
games, as the phrase road game could also refer to a game played when a team
is on a road trip, meaning that it has a sequence of away games.

Handling of byes. The original paper does not specify whether an odd number
of teams is permitted. The webpage invites numbers of teams between 6 and 32,
but does not specify whether odd numbers are allowed. In a time-constrained
tournament, as each game needs 2 teams, an odd number of teams leads to one
team not playing in each round. This is called having a bye. A simple way of
handling this, which we adopt, is to add a dummy team into the round robin
schedule. When another team plays against this team, it has a bye. It is not
clear whether a bye should be counted as a home or away game for constraints
on home and away games. A constraint like “at least one home game in the first
three days” might literally mean that a team must play at home, so as to attract
an audience at the start of the season, or it might mean that a team should not
have to play three consecutive away games, as this would be a disadvantageous
“away break”. In the former case, playing two away games and one bye would
not be acceptable, but in the latter case, it might.

Games per week and weekdays. The original implementation includes an op-
tion for the number of games per week, which is shown with value 2. The number
of game days within a week is significant for some of the constraints, which dis-
tinguish between weekday games and weekend games. The encoding in the paper
suggests that odd-numbered days should be weekdays, while even-numbered days
should be weekends. This is fine for 2 games in a week, but does not really make
sense for higher numbers, as it interleaves weekdays with weekend days, and may
lead to more than 2 weekend days. So instead, we make the decision to have one
weekend day per week, which is always the last day of the week.

Unclear constraint. The paper mentions the optional constraint that “week-
day vs. weekend games are as balanced as possible for each team”. We were
unable to work out what this meant, so we did not implement it. In a time-
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relaxed timetable, where teams might not play on every day, the constraint is
meaningful, but in a time-constrained timetable it is not, and as discussed ear-
lier, we concluded that the original implementation was for a time-constrained
timetable. Our best consistent guess is that, in a time-constrained partial double
round robin with an odd number of teams, one might wish to avoid both byes
being at the weekend.

Repeated second half of timetable. The screenshot in the original paper shows
a double round robin timetable where, in the second half of the timetable, teams
meet in the same order as in the first half. It is unlikely this would have occurred
by chance. We suspect that the original tool had extra constraints to enforce this,
but there is no mention of it in the text, so we have chosen not to implement it.

4 Results
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Fig. 1. Solver CPU times for different numbers of teams and encodings. Broken line
indicates timeout. All solved instances are satisfiable except 1RR-all for 6 teams.
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Following the suggested numbers of teams in the original tool, we tested our
implementation with all numbers of teams from 6 to 32. We tested instances
with all optional constraints turned off (none), and with all optional constraints
turned on (all), with 2 games per week, for both single (1RR) and double (2RR)
round robins.

Figure 1 shows our results. All times are for a single core of an Intel i5-7500
CPU @ 3.40 GHz, with a timeout of 600 s, on Debian Linux 12. We used Round-
ingSat commit b5de84d (February 2022) [3] and MiniSat+ 1.1 [2] as solvers.
RoundingSat represents the current state-of-the-art in PB solving, while an ear-
lier version of MiniSat+ ranked highly in the first PB Evaluation in 2005 [8], so
is roughly contemporary with the original paper.

The original paper does not give detailed information on timings or feasibil-
ity, but does say that, for 12 teams in a double round robin with all constraints
turned on, generating a schedule takes only a few seconds. For this instance, on
our hardware, RoundingSat took 0.1 s, while MiniSat+ took 31.4 s. Our repli-
cation is therefore roughly consistent with this specific result. More generally,
our results replicate the main claimed result, that the encoding is effective and
instances can be solved quickly with a solver that supports true-literal clauses.
We also observe that double round robin instances seem to be easier than single
round robin instances, and that instances become significantly harder to solve
above 18 teams.

One might intuitively assume that turning on all optional constraints leads
to the hardest instances, but in practice, extra constraints can sometimes make
an instance easier, for example when trying to minimise the total number of
breaks [4]. We did not investigate whether this was the case here.

Zhang and others discuss how a SAT solver with support for true-literal
clauses was necessary for their implementation to be effective. However, there
are two underlying decisions in their encoding, and their claim may not hold
if either is changed. Firstly, central to their claim is the observation that the
straightforward encoding of a true-literal clause in pure SAT may need expo-
nentially many clauses. But this is actually a decision about a rejected design;
we now know several more efficient encodings [9]. Indeed, MiniSat+ works by
encoding a PB instance as a SAT instance and solving it with MiniSat.

Secondly, they do not use any auxiliary variables to track whether a team
plays home or away. Many of the optional constraints involve the number and
timing of a team’s home/away games. Using auxiliary variables, the number of
literals needed to check for a team playing a home or away game is reduced from
around n to 1. Consequently, even with the exponential encoding of true-literal
clauses, all the optional constraints would be relatively tractable except for those
involving balancing numbers of home and away games.

5 Deployment

One simple way of making a tool available for easy use and evaluation is to write
a CGI script that reads input from an environment variable, runs the tool on
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the input with a suitable output, reads the output from the tool, then generates
an HTML page with the output dumped it into a textarea element. The CGI
script can be called as the handler for a static HTML form. This is fine in the
short term, provided the number of users is small, so the Web server hosting the
tool is not overloaded.

However, it is likely that the server hosting the tool eventually be retired, as
has happened to some of our older work [5]. Or perhaps a library upgrade will
stop the tool from working without maintenance and recompilation. Whatever
the reason, tools deployed in this way through a Web interface often become
unusable after a few years. This makes the approach unsuitable for long-term
accessibility and reproducibility of research.

Many Computer Science conferences avoid this problem through an artifact
submission and evaluation process, which requires that an artifact consisting
of the source and/or object code for a tool be archived on a platform such as
Zenodo. The artifact usually has an accompanying link to a virtual machine
or Docker image, on which the tool can be run. This solves the problems of
accessibility and reproducibility, but is relatively heavyweight. A fair amount of
time and effort is needed to gain access to and test the tool, compared with the
simple Web interface.

We suggest that a longer-lasting Web interface may be built and deployed us-
ing modern client-side Web technologies, such as JavaScript and WebAssembly.
To this end, our implementation will be made available through a webpage, with
the problem encoding written in human-readable JavaScript and the solver com-
piled to WebAssembly. Although Web standards do change, sometimes in ways
that break backwards compatibility, we expect that browsers capable of view-
ing the page and running the solver will be readily available for the foreseeable
future.

6 Conclusion

Our replication of the SAT-based timetabling tool was largely successful and
confirms that the original approach works. However, one important timetabling
constraint not considered in the original paper, which we are aware can present
a problem for SAT-based approaches, is minimisation of the number of breaks
(consecutive home games or consecutive away games) [4].

It took a little effort to complete the omitted details from the original paper in
a consistent and meaningful way, but as we had already worked on application of
pseudo-Boolean solvers to sports timetabling [7], it was not overly burdensome.

Drawing on our knowledge of more recent research [9], we can see that native
support for true-literal or pseudo-Boolean clauses is not strictly necessary in
the solver, but that these extended clauses are certainly useful in modelling and
encoding the problem. We can also see how the encoding might be improved by
use of auxiliary variables.

Finally, we encourage researchers in a range of fields to think about how
best to make the tools they develop available for easy use beyond the life of
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their research groups. We suggest that WebAssembly may be part of a practical
solution to this problem.
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