
Reproducibility Experiments on the Verification
Results of Neural Networks

Dennis Gross1

Radboud University, Toernooiveld 200-222, 6525 EC Nijmegen, The Netherlands
dgross@science.ru.nl

https://sws.cs.ru.nl/HomePage

Abstract. Artificial neural networks have been widely adopted for vari-
ous applications, such as machine vision, autonomous driving, and smart
factories. However, reproducibility, a critical factor in many neural net-
work studies, is frequently overlooked. In this study, we focus on the
reproducibility of formal verification studies related to neural networks.
Specifically, we investigate the reproducibility of three studies in this
field by analyzing the reproducibility of their experimental results.

Keywords: Formal Verification · Neural Networks · Reproducibility.

1 Introduction

Neural networks (NNs) have delivered impressive results across various applica-
tions [9,1,17]. A NN is modeled after the structure and function of the human
brain. It takes input data and passes it through multiple layers of interconnected
neurons to output a value. The network’s ability to learn from data comes from
adjusting the strength of connections between neurons, known as weights, based
on a measure of the network’s performance on a training data set [2]. The out-
put value of the neural network can represent various things depending on the
application, such as a classification label for an input [12].

However, their widespread use has also raised concerns about their safety [6].
A small perturbation in the input can cause a NN to produce different outputs,
leading to unintended consequences like the misclassification of an image [4,13].
Several researchers have proposed formal verification methods to address the
previously mentioned issues to ensure that a NN satisfies a given specifica-
tion, such as robustness under all possible perturbations in a particular input
range [20,14,5,10].

Reproducing the results of papers that propose these formal verification
methods for neural network classifiers is important for validating their results,
comparing approaches, and identifying their limitations [3].

This report examines the reproducibility of various formal verification papers
in the field of neural network verification and highlights the challenges that can
arise during the reproduction process. First, we provide an introduction to the
formal verification of neural network classifiers. Next, we present our analysis
results and then discuss the implications of our findings.

https://sws.cs.ru.nl/HomePage

2 Gross et al.

2 Formal Verification of Neural Network Classifiers

In this section, we briefly introduce formal verification for neural network classi-
fiers and discuss how these techniques can be integrated into the training pipeline
of neural networks to improve their robustness. If the reader is not familiar with
neural network classifications, we refer here to multiple surveys [18,8].

Definition 1 (Neural Network). A neural network f : X → Y maps an input
x ∈ X to an output y ∈ Y , where X,Y ⊆ R.

A neural network verification problem can be cast into the following decision
problem: Given a neural network f(x), an input domain C ⊆ R, and a property
P ⊆ R. For all x ∈ C, does f(x) satisfy P? The property P is a set of desirable
outputs of the NN, which are dependent on the inputs C.

Example 1. Let f(x) be a binary neural network classifier and x0 be a positive
example such that f(x0) ≥ 0. In this scenario, we can define the set P as the
set of non-negative real numbers (R+) and restrict the input x to a bounded
l∞-norm ball C = {x | |x − x0|∞ ≤ ϵ}. The success (∀x ∈ Cf(x) ∈ P) of the
verification process guarantees that the label of x0 cannot be flipped for any
perturbed inputs within C [20]. We refer to such a success as the neural network
f(x) being robust.

The complete verification setting requires the verifier to provide a definite
”robust/not-robust” answer for a property under verification. Early complete
verifiers relied on techniques such as satisfiability modulo theory (SMT) and
mixed integer linear programming (MILP). In the case of MILP, the verifier
is required to solve the optimization problem specified in Equation (1) while
also meeting additional constraints in order to determine the global minimum.
Unfortunately, these methods often lack scalability due to too many variables
needing to be checked in the MILP and SMT encoding of state-of-the-art neural
networks [11].

minx∈Cf(x) (1)

On the other hand, incomplete solvers are more scalable, but they can only
provide a sound analysis. This means that they can only approximate the lower
bound of minx∈C f(x) as f and can verify the property when f ≥ 0. However,
no conclusion can be drawn when f < 0 [20].

Branch-and-bound (BaB) frameworks have been adopted for efficient verifica-
tion. BaB attempts to solve the optimization problem minx∈C f(x) by recursively
splitting the input domain into multiple subdomains and using an incomplete
verifier as a bounding procedure to provide relatively tight bounds for each sub-
domain. The verification process using BaB is sound as long as the bounding
method used for each subdomain is sound. However, a sound bounding method
is not always complete [20]. It additionally requires feasibility checking in the
bounding method. For example, a bounding method may lose the feasibility
information encoded by the sub-domain constraints, ultimately resulting in an

Reproducibility Experiments on the Verification Results of Neural Networks 3

incomplete verification. An incomplete bounding method that supports feasibil-
ity checking is called Linear Programming (LP). LP finds relatively tight bounds
for each sub-domain, but it has relatively expensive solving costs. Our first two
studies focus on accelerating the bounding of BaB.

The ultimate goal of robustness verification is constructing a training method
to lower certified error in the test data [16]. Several existing approaches in-
tegrate formal verification results directly into the training process of neural
networks [19,7,15]. However, training neural networks with verifiable robustness
guarantees is challenging. Therefore, our third study focuses on improving the
training method.

3 Reproduction Results

In this report, we focus on formal verification methods to verify neural net-
work classifiers and a formal verification method that improves the guaranteed
robustness of neural network classifiers.

Paper selection clarification. We would like to clarify that our selection of the
following studies should not be interpreted as accusing or blaming anyone. We
recognize the significance of these influential works in our field and have chosen
them based on their relevance to our research. It is important to note that we hold
the results of these studies in high regard and deeply respect their contributions
to the advancement of knowledge in our area of study. Another noteworthy point
is that these studies are several years old. Given the rapid developments in fields
such as machine learning and formal verification, it is intriguing to examine their
reproducibility over time.

Our procedure. It is important to clarify the way how we reproduced the exper-
iments. For the environment setup, we worked on each maximum of one hour. If
the working time succeeded that threshold, we concluded that reproducing the
experiments was impossible. For running the environments, we set a threshold of
12 hours. If the run time succeeded that threshold, we concluded that we could
not verify the experiment results.

3.1 Fast and Complete: Enabling Complete Neural Network This
study presents a complete verification procedure. Verification
with Rapid and Massively Parallel Incomplete Verifiers

A key factor for completeness involves feasibility checking in the bounding method.
Some incomplete verifiers, such as LiRPA, can not tell the infeasibility of sub-
domains. LP, on the other hand, always detects infeasibility in the bounding
method. However, LP is not the fastest method. This study combines an op-
timized LiRPA method with LP in a BaB framework to create a faster for-
mal verification method for neural network classifiers called Fast and Complete
(FAC) [20].

4 Gross et al.

Experiments. In their experiments, the authors compared their FAC verification
method against several state-of-the-art verifiers, including BABSR, MIPPlanet,
GNN, GNN-ONLINE, and BDD+BABSR. They evaluated the performance of
all of the previously mentioned methods on various types of neural networks,
including easy, medium, hard, wide, and deep architectures [20], using different
verification properties and the CIFAR-10 dataset.

The authors demonstrate that, in most cases, their method FAC not only
outperforms the other verification methods but is also more scalable.

Reproducibilty

General. The already trained models and the datasets are provided. This saves
training time.

Setup The setup is done by installing an Anaconda environment. A reference
to the benchmark methods is provided. The reproduction of these benchmark
methods needs to be done separately.

Executing During executing the Python script, an error message occurred and
mentioned that our local machine GPU was not supported by the current Py-
Torch version. After fixing the requirements, we could resolve this issue but then
run into another GPU related error.

3.2 Scaling the convex barrier with active sets

This study presents an accelerated branch method. The Active Set solver (ASS)
proceeds by repeatedly solving modified instances of the initial optimization
problem (see Equation (1)), where the set of constraints in the initial problem
is replaced by a smaller set of constraints. The solution of the modified instance
is a lower bound and more iterations lead to tighter bounds. This results in a
solver that is both efficient in terms of memory usage and capable of producing
tight bounds for the initial optimization problem, even when dealing with many
constraints. The computed bounds can be utilized for incomplete verification or
as the bounding component of BaB to achieve complete verification [14].

Experiments. The researchers demonstrated that ASS yields significant formal
verification speed-ups. Their results show that scalable tightness is critical to
the efficiency of neural network verification. They compare their approach in an
incomplete and complete verification setting.

Reproducibility

General. The already trained models and the datasets are provided. In this
study, we have access to both the implementation and the other methods used
for comparison, unlike in many situations where the other methods may not be
available.

Reproducibility Experiments on the Verification Results of Neural Networks 5

Setup. It has been observed that the Git command contained an erroneous
github-repository name, which necessitated correction from plnn-bab to scaling-
the-convex-barrier.

Executing. We were unable to execute the experiment scripts on our machine
in their default configuration. To run the experiments, we had to make code
alterations, which involved removing the .cuda() function call. This resulted in
a slower runtime and we had to stop the experiments after 12 hours. Providing
runtime details for each script would be helpful.

Result visualization. A visualization script for all their plots is provided. To
generate these plots, it was necessary to manually install a Python package
(Seaborn).

Take-Aways. It is advisable to perform a thorough review to ensure the accu-
racy of modifications made to the GitHub repository. Furthermore, it should be
noted that formal verification can be time-consuming. In this regard, providing
approximate details on the runtime can serve as a useful aid. Supporting a script
that also executes the other methods to which the developed method is compared
is essential. Using virtual environments or containers makes it easy to reproduce
the experiments. A link that refers to their documentation is helpful. However,
potential conflicts with different third-party libraries and hardware components
(for example. GPUs) should be considered.

3.3 Towards Stable and Efficient Training of Verifiably Robust
Neural Networks

Training neural networks with verifiable robustness guarantees is challenging,
and various methods exist trying to tackle it. Each of these methods has its
weaknesses and strengths. This study found out that a network trained using IBP
can obtain good verified errors, but during training (especially in the beginning),
it is unstable and hard to tune. The reason lies in the fact that IBP does not
give tight bounds in the beginning of the training, which is essential to gradually
learn to find a good set of weights. CROWN can give tighter lower bounds at
the cost of high computational expenses, but it over-regularizes the network and
forbids achieving good standard and verified accuracy. To address these issues,
this study proposes a new approach called CROWN-IBP that combines the
strengths of both methods. Specifically, CROWN-IBP initially uses CROWN to
provide tighter bounds at the beginning of training. As the network learns, these
bounds are gradually replaced by IBP bounds, leading to a model with learned
tight IBP bounds in the end. This approach overcomes the weaknesses of IBP
and CROWN and results in a more robust neural network [4].

Experiments. Their experiments show that CROWN-IBP consistently outper-
forms other baselines in standard and verified errors and achieves state-of-the-art
verified test errors.

6 Gross et al.

Reproducibility

Setup. We needed to manage to create our own virtual environment. No package
dependency file was provided. This led to the result that executing the code was
impossible. They set seeds that are necessary to gain the exact neural network
training results.

Take-Aways. It is essential to support the repository with a list of all dependen-
cies, so that after years it is still possible to reproduce the results.

4 Discussion

The major reproducibility problem in these studies is the dependency on third-
party software and hardware components. Therefore, it is essential to provide
artificats as independent of third-party tools as possible. To resolve conflicting
third-party software dependencies, it is useful to isolate the developed tool in
an isolated container like via Anaconda or Docker. Hardware component depen-
dencies related to GPUs are more difficult to solve. If possible, we recommend
creating additional small experiments on CPUs (with runtime information) to
show that the method works and link them to the GPU experiments.

To also save time in verifying neural networks, try to support the repository
with pretrained models that are used in the experiments.

Another experience is mostly that when having to compare to some other
method, there is either no implementation available or the models used are not
available (or both).

If a publicly available dataset is available, integrate the dataset downloading
and preprocessing into the script that runs the experiments.

In the case of reproducing neural network training processes (and everywhere
where randomness is involved), always set a seed to allow the reproduction of
the same training results.

Minor mistakes, like changing the repository name but not changing the git-
clone command in the README, can happen. GitHub bots and actions may
help to track such mistakes.

References

1. Retraction note: An automatic tamil speech recognition system by using bidirec-
tional recurrent neural network with self-organizing map. Neural Comput. Appl.
35(4), 3575 (2023)

2. Bayram, B., Kulavuz, B., Ertugrul, B., Bayram, B., Bakirman, T., Çakar, T.,
Dogan, M.: Classification of skin lesion images with deep learning approaches.
Balt. J. Mod. Comput. 10(2) (2022)

3. Brix, C., Müller, M.N., Bak, S., Johnson, T.T., Liu, C.: First three years of the
international verification of neural networks competition (VNN-COMP). CoRR
abs/2301.05815 (2023)

Reproducibility Experiments on the Verification Results of Neural Networks 7

4. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks.
In: IEEE Symposium on Security and Privacy. pp. 39–57. IEEE Computer Society
(2017)

5. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: ATVA. Lecture Notes in Computer Science, vol. 10482, pp. 269–286. Springer
(2017)

6. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: ICLR (Poster) (2015)

7. Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin, C., Uesato, J., Arand-
jelovic, R., Mann, T.A., Kohli, P.: On the effectiveness of interval bound propaga-
tion for training verifiably robust models. CoRR abs/1810.12715 (2018)

8. Jena, B., Nayak, G.K., Saxena, S.: Convolutional neural network and its pretrained
models for image classification and object detection: A survey. Concurr. Comput.
Pract. Exp. 34(6) (2022)

9. Karthik, K., Mahadevappa, M.: Convolution neural networks for optical coher-
ence tomography (OCT) image classification. Biomed. Signal Process. Control.
79(Part), 104176 (2023)

10. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient SMT solver for verifying deep neural networks. In: CAV (1). Lecture Notes
in Computer Science, vol. 10426, pp. 97–117. Springer (2017)

11. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljic, A., Dill, D.L., Kochenderfer, M.J., Barrett, C.W.: The
marabou framework for verification and analysis of deep neural networks. In: CAV
(1). Lecture Notes in Computer Science, vol. 11561, pp. 443–452. Springer (2019)

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS. pp. 1106–1114 (2012)

13. Moosavi-Dezfooli, S., Fawzi, A., Frossard, P.: Deepfool: A simple and accurate
method to fool deep neural networks. In: CVPR. pp. 2574–2582. IEEE Computer
Society (2016)

14. Palma, A.D., Behl, H.S., Bunel, R., Torr, P.H.S., Kumar, M.P.: Scaling the convex
barrier with active sets. In: ICLR. OpenReview.net (2021)

15. Raghunathan, A., Steinhardt, J., Liang, P.: Certified defenses against adversarial
examples. In: ICLR (Poster). OpenReview.net (2018)

16. Salman, H., Yang, G., Zhang, H., Hsieh, C., Zhang, P.: A convex relaxation barrier
to tight robustness verification of neural networks. In: NeurIPS. pp. 9832–9842
(2019)

17. Takayanagi, H., Enosawa, R., Furuya, S., Morishita, K., Saito, K.: Development
of neural networks integrated circuit driving electrostatic motors for microrobot.
Artif. Life Robotics 28(1), 192–198 (2023)

18. Turay, T., Vladimirova, T.: Toward performing image classification and object
detection with convolutional neural networks in autonomous driving systems: A
survey. IEEE Access 10, 14076–14119 (2022)

19. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the
convex outer adversarial polytope. In: ICML. Proceedings of Machine Learning
Research, vol. 80, pp. 5283–5292. PMLR (2018)

20. Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X., Hsieh, C.: Fast and
complete: Enabling complete neural network verification with rapid and massively
parallel incomplete verifiers. In: ICLR. OpenReview.net (2021)

	Reproducibility Experiments on the Verification Results of Neural Networks

