
Bisimulation Minimisation Still Mostly Speeds

Up Probabilistic Model Checking

Adnan Ahmed, Hiva Karami, Anto Nanah Ji, and Franck van Breugel

DisCoVeri Group, Department of Electrical Engineering and Computer Science
York University, Toronto, Canada

Abstract. Katoen, Kemna, Zapreev, and Jansen have empirically shown
that identifying states that are probabilistic bisimilar generally reduces
the size of discrete-time Markov chains (DTMCs) and speeds up proba-
bilistic model checking of those DTMCs. In particular, they have demon-
strated that the time it takes the probabilistic model checker MRMC to
reduce the DTMC and check a property expressed in the logic PCTL for
the reduced DTMC is often less than the time MRMC needs to check
the property for the original DTMC. In this paper, we reproduce those
results. Furthermore, we show that these results also hold for the proba-
bilistic model checkers PRISM, as well as our extension of PRISM with
implementations of algorithms to decide probabilistic bisimilarity from
the literature.

Keywords: probabilistic model checking · probabilistic bisimilarity ·

discrete-time Markov chain · PCTL · MRMC · PRISM.

1 Introduction

A model checker determines whether a model of a system satis�es a property.
A large variety of systems, including those involving software and hardware but
also biological as well as chemical systems, are considered. The models of these
systems formalize (an abstraction of) the states in which the system can be and
how the system can evolve transitioning from one state to another. The property
considered by the model checker is often expressed as a formula of a logic.

In this paper we focus on explicit state model checkers. Roughly, these model
checkers systematically visit the states of the model searching for a violation
of the property. The number of states of a model can be humongous. This is
known as the state space explosion problem. One approach to tackle this problem
is reducing the size of the model by identifying states that satisfy the same
properties. As has been shown by Fisler and Vardi [5], for models known as
transition systems this approach is ine�ective as the cost of performing the
reduction of the model outweighs that of checking the property for the model.

For models known as discrete-time Markov chains (DTMC), which can model
systems that rely on randomness, Katoen, Kemna, Zapreev, and Jansen [10] have
empirically shown that the reduction of the size of these probabilistic models



2 Adnan Ahmed, Hiva Karami, Anto Nanah Ji, and Franck van Breugel

often is e�ective. They identify states that are probabilistic bisimilar, an equiva-
lence relation that captures similarity of behaviour due to Larsen and Skou [13].
Probabilistic bisimilarity preserves PCTL, a logic that can express a large array
of properties involving probabilities and was introduced by Hansson and Jons-
son [6]. That is, states that are probabilistic bisimilar satisfy the same PCTL
formulas.

Katoen et al. use the probabilistic model checker MRMC [11] in their experi-
ments. They consider four types of DTMCs and for each a property expressed in
PCTL. In the experiments for each DTMC and PCTL formula they compare (1)
the time taken to decide probabilistic bisimilarity for the DTMC, reduce the size
of the DTMC by identifying probabilistic bisimilar states, and check the PCTL
formula for the reduced DTMC with (2) the time taken to check the PCTL for-
mula for the original DTMC. Their experimental results show that (1) is often
less than (2), from which they conclude that bisimulation minimisation, that
is, reducing the size of the DTMC by identifying probabilistic bisimilar states,
mostly speeds up probabilistic model checking. More details can be found in [11]
as well as [18, Chapter 4] and [19].

The results of Katoen et al. are 18 years old. Since 2007, new algorithms to
decide probabilistic bisimilarity have been introduced, new probabilistic model
checkers have been developed, existing probabilistic model checkers have been
improved, and computer hardware has made strides as well. Therefore, we ask the
question whether bisimulation minimisation still mostly speeds up probabilistic
model checking.

To answer this question, we not only consider the probabilistic model checker
MRMC, as Katoen et al. did, but also the currently most popular probabilis-
tic model checker PRISM [12]. Furthermore, we also consider our extension of
PRISM with implementations of other algorithms to decide probabilistic bisim-
ilarity: the one by Buchholz [1], the original algorithm of Derisavi, Hermanns,
and Sanders [3], their algorithm that uses red black trees instead of splay trees,
and the algorithm introduced by Valmari and Franceschinis [17].

As we will see, the results of Katoen et al. are reproducible. Furthermore, we
will show that their results also hold for other probabilistic model checkers such
as PRISM, as well as our extension of PRISM.

2 Probabilistic Model Checkers

In our experiments, we not only consider MRMC1, but also PRISM2. Both
support DTMCs as models and PCTL formulas as properties. Next, we brie�y
discuss these probabilistic model checkers.

In our experiments, we make use of the latest version of MRMC, namely
version 1.5. In MRMC, the algorithm of Derisavi, Hermanns, and Sanders [3] to
decide probabilistic bisimilarity has been implemented.

1 mrmc-tool.org
2 www.prismmodelchecker.org

https://mrmc-tool.org/
https://www.prismmodelchecker.org/


Bisimulation Minimisation Still Speeds Up Probabilistic Model Checking 3

We also employ the latest version of PRISM, version 4.8.1.dev. This prob-
abilistic model checker contains an implementation of a variation on Derisavi's
algorithm to decide probabilistic bisimilarity [2]. We have made one change to
PRISM so that the reduced DTMCs produced by MRMC and PRISM have the
same size: we set the desired accuracy when comparing sums of probabilities
in the probabilistic bisimilarity decision procedure to 10−5. We have extended
PRISM3 with implementations of other algorithms to decide probabilistic bisim-
ilarity: the one by Buchholz [1], the original algorithm of Derisavi, Hermanns,
and Sanders [3], their algorithm that uses red black trees instead of splay trees,
and the algorithm introduced by Valmari and Franceschinis [17].

To check that our implementations of these minimisation algorithms are cor-
rect, we generated millions of random DTMCs. For each random DTMC, ran
the �ve minimisation algorithms. We checked that the �ve resulting minimized
DTMCs have the same number of states and transitions.

3 Models and Properties

In our experiments, we use most of the DTMCs and PCTL properties that have
been considered in [10]. Below, we brie�y introduce them.

3.1 Crowds Protocol

This protocol was introduced by Reiter and Rubin in [15]. It protects anonymity
of users of the web, to some degree, by grouping some internet users, known as a
crowd, for collectively issuing requests on behalf of its members. A request to a
web server from a crowd member is �rst passed to another random group member
who can either submit the request or delegate the handling of the request to yet
another randomly chosen crowd member. As a result, the request is eventually
submitted by a random member of the crowd.

Shmatikov [16] modelled the protocol in PRISM and distinguished between
honest and corrupt crowd members. The protocol has two parameters: N , the
size of the crowd, and R, the number of runs of the protocol. PRISM was used
to determine whether the probability of corrupt members eventually, say within
10000 steps, observing messages along di�erent routing paths originate from a
particular member is smaller than 0.5 � the probability of identifying the sender
increases as this number of paths and probability grow (see [16] for details). This

property can be expressed in PCTL's original syntax as F≤10000
<0.5 observe, where

the atomic proposition observe captures that a corrupt crowd member observes
messages from a particular member more than once. In MRMC's syntax, the
property is expressed as P{<0.5}[tt U[0,10000] observe] and the property
can be expressed in PRISM as P<0.5[F<=10000 "observe"].

3 Our extension of PRISM is available at github.com/Lassonde-Undergraduate-
Research-2024/PRISM-V2.

https://github.com/Lassonde-Undergraduate-Research-2024/PRISM-V2
https://github.com/Lassonde-Undergraduate-Research-2024/PRISM-V2


4 Adnan Ahmed, Hiva Karami, Anto Nanah Ji, and Franck van Breugel

3.2 Leader Election Protocol

Given a ring of indistinguishable processors, the protocol of Itai and Rodeh [9]
elects a leader among the processors by sending messages synchronously along
the ring. To break symmetries, the protocol relies on randomness. In particular,
each processor randomly chooses an integer between one and K, where K is a
parameter of the protocol. The protocol has one other parameter: N , the number
of processors.

The probability that the protocol elects a leader within a particular number
of steps is a property of interest. For example, one can express in PCTL that the
probability that the protocol elects a leader within 5000 steps is greater than
0.5 by F≤5000

>0.5 elected, where the atomic proposition elected captures that the
protocol has elected a leader. In MRMC's syntax, the property is expressed as
P{>0.5}[tt U[0,5000] elected] and the property can be expressed in PRISM
as P>0.5[F<=5000 "elected"].

3.3 Randomised Mutual Exclusion

Pnueli and Zuck [14] present a mutual exclusion protocol of processes. It was
designed so that it gives rise to a small state space and is easy to verify. The
protocol has a single parameter: N , the number of processes.

Probabilistic model checkers such as MRMC and PRISM allow us to de-
termine the probability that process 1 is the �rst to enter the critical sec-
tion. For example, we can express the property that the probability that pro-
cess 1 is the �rst to enter the critical section within 10000 steps is greater
than 0.5 can be expressed in PCTL as notEnter1 U≤10000

>0.5 enter1, where the
atomic proposition enter1 captures that process 1 enters the critical section
and the atomic proposition notEnter1 represents that the other processes do
not enter the critical section. In MRMC's syntax, the property is expressed as
P{> 0.5}[notEnter1 U[0,10000] enter1] and the property can be expressed
in PRISM as P>0.5["notEnter1" U<=10000 "enter1"].

The above three sample DTMCs were also considered in [10]. A fourth sample
DTMC considered in op. cit. was obtained from a continuous-time Markov chain
(CTMC) via uniformization. We were unable to obtain a DTMC with the number
of states reported in op. cit.

4 Experiments and Results

The experiments were run on an Intel machine with an i7-8700T CPU and 15 GB
of RAM. We run the probabilistic model checkers on the above mentioned models
with the above described properties with and without bisimulation minimisation.
Rather than just measuring the time it takes to do the bisimulation minimisation
and checking the property as done in [10], we also consider the time to read the
�les that contain the transitions and labelling, build the model, etc. As we will
see, even if we include this additional time, bisimulation minimisation still speeds



Bisimulation Minimisation Still Speeds Up Probabilistic Model Checking 5

up probabilistic model checking for these examples. We run each experiment 50
times and report the average speed up (the amount it takes without minimisation
/ the amount of time it takes with minimisation) or slow down (− the amount of
time it takes with minimisation / the amount it takes without minimisation), as
well as the standard deviation. We only report the results for those experiments
that took more than 0.01 second and less than ten minutes. Since some of the
models have a large number of states, we set the maximum heap size for Java
to 6G.

The PRISM model of the crowds protocol labels some states with deadlock.
This label is treated di�erently from the other labels. To ensure that states
labelled with deadlock are treated in MRMC as they are in PRISM, we add self-
loops in states labelled with deadlock and subsequently we remove the deadlock
label in the MRMC model. As a result, the number of states of the reduced
DTMC for the crowds protocols di�er slightly from those reported in [10].

4.1 Crowds Protocol

As we can see in the table below, the reduced DTMCs are signi�cantly smaller
than the original DTMCs. As we already mentioned, these numbers di�er slightly
from those reported in [10]. For example, in case N = 5 and R = 3, in our case
the reduced model has 72 states and 105 transitions whereas op. cit. reported
53 states.

original DTMC reduced DTMC reduction factor
N R states transitions states transitions states transitions
5 3 1198 2038 72 105 16.6 19.4
5 4 3515 6035 140 209 25.1 28.9
5 5 8653 14953 230 348 37.6 43.0
5 6 18817 32677 333 507 56.5 64.5
10 3 6563 15143 81 126 81.0 120.2
10 4 30070 70110 160 256 187.9 273.9
10 5 111294 261444 265 431 420.0 606.6
10 6 352535 833015 396 651 890.2 1279.6
15 3 19228 55948 81 126 237.4 444.0
15 4 119800 352360 160 256 748.8 1376.4
15 5 592060 1754860 265 431 2234.2 4071.6
15 6 2464168 7347928 396 651 6222.6 11287.1

In the table below, we present MRMC's speed up factors for the crowds
protocol. We do not report on the cases that N = 5 and R = 3 or R = 4,
because those experiments took less than 0.01 second. For all experiments we
observe an average speed up factor between 4 and 5, which is signi�cant.



6 Adnan Ahmed, Hiva Karami, Anto Nanah Ji, and Franck van Breugel

N 5 5 10 10 10
R 5 6 3 4 5

avg std avg std avg std avg std avg std
4.22 0.42 4.34 0.74 4.80 0.49 4.50 0.65 4.13 0.23

N 10 15 15 15 15
R 6 3 4 5 6

avg std avg std avg std avg std avg std
4.44 0.16 4.09 0.27 4.41 0.43 4.43 0.32 4.06 0.05

In the graph below, we present PRISM's average speed up or slow down
as well as the standard deviation for the crowds protocol where the crowd has
size 5. If the bar goes up, bisimulation minimisation speeds up probabilistic
model checking, whereas if the bar goes down, bisimulation minimisation slows
it down. None of the algorithms show any signi�cant speed up. The Buchholz
minimisation algorithm performs worst with an average slow down factor of 1.39
for R = 6.

3 4 5 6

-1.5

-1/1

Crowds protocol with parameters N = 5 and K = 3, 4, 5, 6

sp
ee
d
fa
ct
o
r

PRISM with Derisavi [2] (standard)

PRISM with Buchholz [1]

PRISM with Derisavi et al. [3] (splay tree)

PRISM with Derisavi et al. [3] (red-black tree)

PRISM with Valmari et al.[17]

Next, we present the results when the crowd has size 10. Apart from the
Buchholz minimisation algorithm, all others speed up.



Bisimulation Minimisation Still Speeds Up Probabilistic Model Checking 7

3 4 5 6

-4

-3

-2

-1/1

2

3

Crowds protocol with parameters N = 10 and K = 3, 4, 5, 6

sp
ee
d
fa
ct
o
r

Finally, we consider a crowd size of 15 for this protocol. Also in this case, the
Buchholz minimisation algorithm does not speed up in most cases. The minimi-
sation algorithm by Valmari et al. performs very well with speed up factors even
larger than those achieved by MRMC.

3 4 5 6

-4

-3

-2

-1/1

2

3

4

5

6

Crowds protocol with parameters N = 15 and K = 3, 4, 5, 6

sp
ee
d
fa
ct
o
r

4.2 Leader Election Protocol

Also for this example, the reduced DTMCs are much smaller than the original
DTMCs, as can be seen in the table below. Here, the numbers exactly match
the ones reported in [10].



8 Adnan Ahmed, Hiva Karami, Anto Nanah Ji, and Franck van Breugel

original DTMC reduced DTMC reduction factor
N K states transitions states transitions states transitions
4 2 55 70 10 11 5.5 6.4
4 4 782 1037 10 11 78.2 94.3
4 8 12302 16397 10 11 1230.2 1490.6
4 16 196622 262157 10 11 19662.2 23832.5
5 2 162 193 12 13 13.5 14.8
5 4 5122 6145 12 13 426.8 472.7
5 6 38882 46657 12 13 3240.2 3589.0
5 8 163842 196609 12 13 13653.5 15123.8

In the table below, we present MRMC's speed up factors for the leader elec-
tion protocol. Minimisation gives rise to average speed up factors larger than 25.

N 4 4 5 5
K 8 16 6 8

avg std avg std avg std avg std
27.47 2.22 24.10 2.21 21.51 6.01 24.47 1.02

Let us now turn to PRISM. First, we consider the leader election protocol for
4 processors. As can be concluded from the graph below, PRISM sees a speed up,
especially for K = 16. Although PRISM's original minimisation algorithm shows
the largest speed up, our implementations of the other minimisation algorithms
show speed as well. For this example, MRMC achieves a much larger speed up
than PRISM.

2 4 8 16

-1/1

2

3

Leader election protocol with parameters N = 4 and K = 2, 4, 8, 16

sp
ee
d
u
p
fa
ct
o
r

Next, we consider the leader election protocol for 5 processors. The results
are similar.



Bisimulation Minimisation Still Speeds Up Probabilistic Model Checking 9

2 4 6 8

-1/1

2

Leader election protocol with parameters N = 5 and K = 2, 4, 6, 8

sp
ee
d
u
p
fa
ct
o
r

4.3 Randomised Mutual Exclusion

Again we see a reduction is the size of the DTMC. Also for this example, our
numbers match those reported in [10].

original DTMC reduced DTMC reduction factor
N states transitions states transitions states transitions
3 2368 8272 1123 3846 2.1 2.1
4 27600 123883 5224 21796 5.3 5.7
5 308800 1680086 18501 88391 16.7 19.0
6 3377344 21514489 54706 289022 61.7 74.4

In the table below, we present MRMC's speed up factors for the randomized
mutual exclusion protocol. Minimisation gives rise to some speed up, although
the average speed up factors are much smaller than for the other two protocols.

4 5 6
avg std avg std avg std
1.47 0.13 1.63 0.04 1.53 0.01

For this �nal protocol, we see that only PRISM's original minimisation al-
gorithm achieves a speed up. For that algorithm, the average speed up factors
are comparable to those of MRMC. We do not depict the average slow down
factor for the Buchholz minimisation algorithm for N = 5, which is 27.18, as it
would distort the graph. We do not report the average slow down factor for the
Buchholz minimisation algorithm for N = 6 since each experiment takes more
than ten minutes.



10 Adnan Ahmed, Hiva Karami, Anto Nanah Ji, and Franck van Breugel

3 4 5 6

-4

-3

-2

-1/1

2

Random mutual exclusion protocol with parameters N = 3, 4, 5, 6

sp
ee
d
u
p
fa
ct
o
r

5 Conclusion

Not only have we been able to reproduce the results of Katoen et al. of 18
years ago, demonstrating that bisimulation minimisation speeds up probabilistic
model checking, but we have also shown that these results stand the test of time,
even though probabilistic model checkers have been improved, new algorithms
to decide probabilistic bisimilarity have been developed, and computer hardware
has changed.

We consider three examples: the crowds protocol, the leader election protocol,
and randomized leader election. MRMC's bisimulation minimisation performs
well for all three. For PRISM the situation is less clear cut. PRISM's original
minimisation algorithm performs fairly well, but is sometimes outperformed by
the minimisation algorithm of Valmari et al. The two versions of the minimisa-
tion algorithm of Derisavi et al., the one using splay trees and the other using
red-black trees, show very similar performance. The Buchholz minimisation al-
gorithm often shows the poorest performance.

In the future, we would like to extend our work in two directions. First of
all, we plan to also consider the probabilistic model checker Storm4 [8] in our
experiments. Furthermore, we intend to consider numerous other examples of
probabilistic protocols and randomized algorithms such as the ones that can be
found in the Quantitative Veri�cation Benchmark Set5 [7] as well as the examples
accompanying jpf-probabilistic6 [4].

4 www.stormchecker.org
5 github.com/ahartmanns/qcomp
6 github.com/javapath�nder/jpf-probabilistic

https://www.stormchecker.org/
https://github.com/ahartmanns/qcomp
https://github.com/javapathfinder/jpf-probabilistic


Bisimulation Minimisation Still Speeds Up Probabilistic Model Checking 11

Acknowledgements. The authors would like to thank the referee for their con-
structive feedback. This research was supported by the Natural Sciences and
Engineering Research Council of Canada.

References

1. Buchholz, P.: E�cient computation of equivalent and reduced representations for
stochastic automata. International Journal of Computer Systems Science and En-
gineering 15(2), 93�103 (Apr 2000)

2. Derisavi, S.: Signature-based symbolic algorithm for optimal Markov chain lump-
ing. In: Proceedings of the 4th International Conference on the Quantitative Eval-
uation of Systems. pp. 141�150. IEEE, Edinburgh, UK (Sep 2007)

3. Derisavi, S., Hermanns, H., Sanders, W.: Optimal state-space lumping in Markov
chains. Information Processing Letters 87(6), 309�315 (Sep 2003)

4. Fatmi, S., Chen, X., Dhamija, Y., Wildes, M., Tang, Q., Breugel, F.v.: Probabilistic
model checking of randomized Java code. In: Laarman, A., Sokolova, A. (eds.)
Proceedings of the 27th International Symposium on Model Checking Software.
Lecture Notes in Computer Science, vol. 12864, pp. 157�174. Springer-Verlag (Jul
2021)

5. Fisler, K., Vardi, M.: Bisimulation minimization in an automata-theoretic veri�ca-
tion framework. In: Gopalakrishnan, G., Windley, P. (eds.) Proceedings of the 2nd
International Conference on Formal Methods in Computer-Aided Design. Lecture
Notes in Computer Science, vol. 1522, pp. 115�132. Springer-Verlag, Palo Alto,
CA, USA (Nov 1998)

6. Hansson, H., Jonsson, B.: A framework for reasoning about time and reliability.
In: Proceedings of the Real-Time Systems Symposium. pp. 102�111. IEEE, Santa
Monica, CA, USA (Dec 1989)

7. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quantita-
tive veri�cation benchmark set. In: Vojnar, T., Zhang, L. (eds.) Proceedings of the
25th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Lecture Notes in Computer Science, vol. 11427, pp. 344�350.
Springer-Verlag, Prague, Czech Republic (Apr 2019)

8. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilis-
tic model checker Storm. International Journal on Software Tools for Technology
Transfer 24(4), 589�610 (Aug 2022)

9. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. In: Proceedings
of the 2nd Annual Symposium on Foundations of Computer Science. pp. 150�158.
IEEE, Nashville, TN, USA (Oct 1981)

10. Katoen, J.P., Kemna, T., Zapreev, I., Jansen, D.: Bisimulation minimisation mostly
speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.) Pro-
ceedings of the 13th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. Lecture Notes in Computer Science, vol. 4424,
pp. 87�101. Springer-Verlag, Braga, Portugal (Mar/Apr 2007)

11. Katoen, J.P., Khattri, M., Zapreev, I.: A Markov reward model checker. In: Pro-
ceedings of the 2nd International Conference on the Quantitative Evaluation of
Systems. pp. 243�244. IEEE, Torino, Italy (Sep 2005)

12. Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: Veri�cation of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proceedings of the
23rd International Conference on Computer Aided Veri�cation. Lecture Notes in



12 Adnan Ahmed, Hiva Karami, Anto Nanah Ji, and Franck van Breugel

Computer Science, vol. 6806, pp. 585�591. Springer-Verlag, Snowbird, UT, USA
(Jul 2011)

13. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. In: Proceedings
of the 16th Annual ACM Symposium on Principles of Programming Languages.
pp. 344�352. ACM, Austin, TX, USA (Jan 1989)

14. Pnueli, A., Zuck, L.: Veri�cation of multiprocess probabilistic protocols. In:
Kameda, T., Misra, J., Peters, J., Santoro, N. (eds.) Proceedings of the 3rd An-
nual ACM Symposium on Principles of Distributed Computing. pp. 12�27. ACM,
Vancouver, Canada (Aug 1984)

15. Reiter, M., Rubin, A.: Crowds: anonymity for web transactions. ACM Transactions
on Information and System Security 1(1), 66�92 (Nov 1998)

16. Shmatikov, V.: Probabilistic analysis of anonymity. In: Proceedings of the 15th
IEEE Computer Security Foundations Workshop. pp. 119�128. IEEE, Cape Breton,
Canada (Jun 2002)

17. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping. In:
Esparza, J., Majumdar, R. (eds.) Proceedings of the 16th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. Lecture
Notes in Computer Science, vol. 6015, pp. 38�52. Springer-Verlag, Paphos, Cyprus
(Mar 2010)

18. Zapreev, I.: Model Checking Markov Chains: Techniques and Tools. Ph.D. thesis,
University of Twente, Enschede, the Netherlands (Mar 2008)

19. Zapreev, I., Jansen, C.: MRMC test suite, version 1.5 (Jan 2011), available at
mrmc-tool.org

A Detailed Results

Below, we provide the details for the �ve PRISM minimisation algorithms. As
in the main part, we use negative speed ups to indicate that probabilistic model
checking without bisimulation minimisation is faster than with bisimulation min-
imisation. For example, for the crowds protocol, forN = 5 and R = 6, probabilis-
tic model checking without bisimulation minimisation is faster than probabilistic
model checking with bisimulation minimisation using Buchholz's algorithm by
a factor 1.39. If probabilistic model checking with bisimulation minimisation is
faster than without bisimulation minimisation, then we report a positive speed
up. For example, for the crowds protocol, for N = 10 and R = 6, probabilistic
model checking with bisimulation minimisation using Valmari et al.'s algorithm
is faster than probabilistic model checking without bisimulation minimisation by
a factor 2.76. For each row, we use red for the algorithm with the best average.

https://mrmc-tool.org/


Bisimulation Minimisation Still Speeds Up Probabilistic Model Checking 13

A.1 Crowds Protocol

PRISM Buchholz Derisavi Valmari
splay red-black

N R avg std avg std avg std avg std avg std
5 3 -1.08 0.03 -1.23 0.03 -1.03 0.03 -1.04 0.03 -1.01 0.03
5 4 -1.14 0.04 -1.23 0.03 -1.03 0.02 -1.05 0.03 1.02 0.03
5 5 -1.13 0.04 -1.28 0.05 -1.09 0.05 -1.06 0.04 1.03 0.03
5 6 -1.14 0.04 -1.39 0.05 -1.11 0.05 -1.09 0.05 -1.08 0.03
10 3 -1.05 0.04 -1.14 0.04 1.01 0.04 1.01 0.03 1.09 0.04
10 4 1.19 0.04 -1.13 0.07 1.23 0.04 1.22 0.04 1.27 0.07
10 5 1.60 0.04 1.05 0.03 1.57 0.05 1.57 0.05 1.72 0.05
10 6 2.02 0.05 -3.35 0.05 1.66 0.03 1.64 0.05 2.69 0.09
15 3 1.20 0.03 -1.05 0.04 1.22 0.05 1.20 0.03 1.35 0.04
15 4 2.19 0.04 1.61 0.05 2.04 0.06 2.05 0.06 2.43 0.07
15 5 4.26 0.06 -1.43 0.02 3.82 0.14 3.71 0.13 4.64 0.23
15 6 3.00 0.61 -4.15 0.03 3.97 0.05 3.96 0.06 6.55 0.08

A.2 Leader Election Protocol

PRISM Buchholz Derisavi Valmari
splay red-black

N K avg std avg std avg std avg std avg std
4 2 -1.10 0.11 -1.01 0.06 -1.01 0.05 -1.04 0.07 -1.04 0.06
4 4 -1.07 0.06 -1.01 0.03 1.01 0.03 -1.03 0.04 -1.01 0.04
4 8 1.04 0.06 -1.01 0.06 -1.00 0.06 -1.03 0.05 1.11 0.07
4 16 2.90 0.15 1.99 0.12 2.63 0.11 2.51 0.10 2.76 0.13
5 2 -1.08 0.09 -1.02 0.06 -1.21 0.08 -1.04 0.06 -1.04 0.07
5 4 -1.09 0.07 -1.17 0.04 -1.00 0.03 -1.04 0.04 -1.02 0.03
5 6 1.31 0.07 1.07 0.07 1.27 0.07 1.21 0.07 1.29 0.06
5 8 2.49 0.14 2.10 0.25 2.37 0.13 2.26 0.11 2.29 0.10

A.3 Randomized Mutual Exclusion

PRISM Buchholz Derisavi Valmari
splay red-black

N avg std avg std avg std avg std avg std
3 -1.18 0.04 -1.64 0.09 -1.27 0.03 -1.34 0.05 -1.08 0.03
4 -1.10 0.04 -3.82 0.21 -1.58 0.07 -1.62 0.07 -1.70 0.14
5 1.41 0.02 -27.18 1.04 -2.04 0.08 -2.02 0.09 -2.16 0.46
6 1.75 0.17 -4.64 0.08 -4.52 0.05 -3.66 0.65

There is no entry for the Buchholz minimisation algorithm for N = 6 as the
experiment took longer than ten minutes.


	Bisimulation Minimisation Still Mostly Speeds Up Probabilistic Model Checking

